Skip to primary navigation
Skip to content
Skip to footer
Release notes for
leechanwoo-kor
About
Category
Tags
Timeline
토글 메뉴
현재까지 337개의 포스트를 작성했어요.
[MLOps] 데이터 버전 관리 DVC
2024. 10. 25.
[MLOps] Kubeflow Pipiline 소개
2024. 10. 14.
[Anomaly Detection] Extended Isolation Forest (EIF) 소개
2024. 8. 1.
[논문 리뷰] Trustworthy Residual Vehicle Value Prediction for Auto Finance
2024. 7. 22.
[Anaconda] 필수 명령어 모음
2024. 7. 15.
[논문 리뷰] Bootstrap Latent Representations for Multi-modal Recommendation
2024. 6. 3.
[Recommendation System] 그래프 기반 추천 시스템
2024. 5. 20.
[Recommendation System] 추천 모델 개발 (3) - 딥러닝 모델
2024. 4. 16.
[Recommendation System] 추천 모델 개발 (2) - 딥러닝 모델
2024. 4. 16.
[Recommendation System] 추천 모델 개발 (1) - 모델 데이터
2024. 4. 16.
[Recommendation System] 추천 모델
2024. 4. 16.
[Recommendation System] 추천 서비스란 무엇인가
2024. 4. 16.
[Recommendation System] 유튜브 알고리즘으로 보는 딥러닝 기반 추천 시스템
2024. 4. 15.
[Recommendation System] 연관규칙분석(Apriori Algorithm)
2024. 4. 12.
[Recommendation System] 추천 시스템과 머신 러닝 (2)
2024. 4. 11.
[Recommendation System] 추천 시스템과 머신 러닝 (1)
2024. 4. 11.
[Data Cleaning] 05. Inconsistent Data Entry (일관되지 않은 데이터 입력)
2024. 4. 4.
[Data Cleaning] 04. Character Encodings (문자 인코딩)
2024. 4. 4.
[Data Cleaning] 03. Parsing Dates (날짜 파싱)
2024. 4. 4.
[Data Cleaning] 02. Scaling and Normalization (스케일링 및 정규화)
2024. 4. 4.
[Time Series] 06. Forecasting With Machine Learning
2024. 4. 1.
[Data Cleaning] 01. Handling Missing Values (결측값 처리)
2024. 4. 1.
[Time Series] 05. Hybrid Models
2024. 3. 29.
[Time Series] 04. Time Series as Features
2024. 3. 29.
[Time Series] 03. Seasonality
2024. 3. 29.
[Time Series] 02. Trend
2024. 3. 29.
[Time Series] 01. Linear Regression With Time Series
2024. 3. 28.
[LLM] Pretrained vs Fine-tuned vs Instruction-tuned vs RL-tuned
2024. 3. 20.
[논문 리뷰] prophet (페이스북 시계열예측 모델)
2024. 2. 16.
[LLM] sLLM(small Large Language Model)
2024. 2. 6.
[TensorFlow] Real-world time series data (3)
2024. 1. 24.
[TensorFlow] Real-world time series data (2)
2024. 1. 24.
[TensorFlow] Real-world time series data (1)
2024. 1. 24.
[AI] ANN, DNN, CNN, RNN의 개념과 차이
2024. 1. 23.
[TensorFlow] Recurrent Neural Networks for Time Series (2)
2024. 1. 23.
[TensorFlow] Recurrent Neural Networks for Time Series (1)
2024. 1. 23.
[TensorFlow] Deep Neural Networks for Time Series (3)
2024. 1. 23.
[TensorFlow] Deep Neural Networks for Time Series (2)
2024. 1. 23.
[TensorFlow] Deep Neural Networks for Time Series (1)
2024. 1. 23.
[TensorFlow] Sequences and Prediction (2)
2024. 1. 22.
[TensorFlow] Sequences and Prediction (1)
2024. 1. 22.
[Encoding] 라벨 인코딩과 원핫 인코더를 사용한 범주형 인코딩
2024. 1. 18.
[Machine Learning] ML에서 재현성(Reproducibility)이 중요한 이유
2024. 1. 10.
[BI] Power BI
2024. 1. 2.
2024 : Happy New Year!
[LangChain] 모듈(Modules)
2023. 12. 26.
[Poetry] A Modern Python Dependency Manager and Project Builder
2023. 12. 22.
[LangChain] LangChain(LangChain)
2023. 12. 22.
[LangChain] LangChain, Chat with Your Data
2023. 12. 21.
[LlamaIndex] 라마인덱스(LlamaIndex) 활용
2023. 12. 19.
[LlamaIndex] 라마인덱스(LlamaIndex)
2023. 12. 19.
[Amazon Sagemaker] Amazon SageMaker 모델 빌딩 파이프라인 소개
2023. 12. 11.
[Amazon Sagemaker] Amazon SageMaker 모델 학습 방법 소개
2023. 12. 8.
[Amazon Sagemaker] Amazon SageMaker 모델 학습 방법 소개
2023. 12. 8.
[Database] Concurrency Control
2023. 12. 7.
[Generative AI with Large Language Models] Introduction to LLMs and the generative AI project lifecycle (2)
2023. 12. 7.
[Generative AI with Large Language Models] Introduction to LLMs and the generative AI project lifecycle
2023. 12. 7.
[LLM] LLaMA기반 Vicuna와 Vicuna기반 Multi-Modal 모델: MiniGPT-4
2023. 12. 6.
[LLM] GPT4All: 로컬 PC에서 사용가능한 LLaMA
2023. 12. 6.
[LLM] Meta LLaMA의 친척 — Stanford Univ의 Alpaca
2023. 12. 5.
[LLM] Meta AI의 Small Gaint Model: LLaMA(Large Language Model Meta AI)
2023. 12. 5.
[Database] Transaction Management
2023. 11. 30.
[Markdown] 마크다운 표(Table) 작성하는 법
2023. 11. 21.
[Markdown] 마크다운 문서 내부 링크 이동 (북마크, 바로 가기, 목차)
2023. 11. 21.
[Markdown] 마크다운 작성 방법
2023. 11. 21.
[Database] Indexing Files
2023. 11. 16.
[Data Visualization] Reduce and Focus+Context
2023. 11. 9.
[Database] Storage and Basic Files
2023. 11. 9.
[Data Visualization] Interacting with Views
2023. 11. 2.
[Database] Normalization
2023. 11. 2.
[Data Visualization] Validation
2023. 10. 26.
[Data Visualization] Arrange Networks and Trees
2023. 10. 19.
[Database] SQL (Structured Query Language) - 3
2023. 10. 19.
[Data Visualization] Arrange Table
2023. 10. 12.
[Database] SQL (Structured Query Language) - 2
2023. 10. 12.
[Data Visualization] Colors (Encoding)
2023. 10. 5.
[Database] SQL (Structured Query Language)
2023. 10. 5.
[Data Visualization] Colors (Perception)
2023. 9. 28.
[Database] Relational Schema Design ER to Relational Mapping
2023. 9. 28.
[Database] Relational Algebra
2023. 9. 21.
[Data Visualization] Marks and Channels
2023. 9. 20.
[Database] Relational Model
2023. 9. 14.
[Data Visualization] Why - Task Abstraction
2023. 9. 13.
[Data Visualization] What - Data Abstraction
2023. 9. 13.
[Database] Entity Relationship(ER) Model
2023. 9. 7.
[Data Visualization] Justification
2023. 9. 6.
[Data Visualization] Introduction to InfoVis (2)
2023. 9. 6.
[Data Visualization] Introduction to InfoVis (1)
2023. 9. 6.
[Database] Database Systems
2023. 8. 31.
[Spring Boot] 스프링 부트 배포하기 (Maven, Gradle) War 파일로 빌드
2023. 8. 28.
[Storage] 스토리지란? DAS란? / NAS란? / SAN 이란? 차이점?
2023. 8. 22.
[Java] 그레이들(Gradle) 개념
2023. 8. 15.
[Data Structures & Algorithms] Searching
2023. 6. 1.
[Artificial Intelligence] Reinforcement Learning
2023. 5. 23.
[Data Structures & Algorithms] Hashing
2023. 5. 18.
[Operating System] Virtual Memory Management
2023. 5. 17.
[Artificial Intelligence] Object Recognition
2023. 5. 16.
[Data Structures & Algorithms] Sorting (1)
2023. 5. 11.
[Artificial Intelligence] 다층 퍼셉트론(Multi-Layer Perceptiron, MLP)
2023. 5. 9.
[Spring] Batch 소개와 간단한 예제
2023. 5. 8.
[Spring] Batch 구조와 구성 요소
2023. 5. 8.
[Operating System] Virtual Memory Organization
2023. 5. 3.
[Artificial Intelligence] 퍼셉트론(Perceptiron)
2023. 5. 2.
[Artificial Intelligence] 결정트리(ID3)
2023. 4. 25.
[Programming] REST란? REST API 와 RESTful API의 차이점
2023. 4. 20.
[Programming] HTTP 상태 코드 정리
2023. 4. 20.
[Data Structures & Algorithms] Heap : Priority Queue
2023. 4. 13.
[Operating System] Memory Management
2023. 4. 12.
[Artificial Intelligence] Bayesian Networks
2023. 4. 11.
[LaTeX] LaTeX 기호 모음 (LaTex Symbol Collection)
2023. 4. 11.
[Data Structures & Algorithms] Binary Search Tree
2023. 4. 6.
[Operating System] Process Scheduling
2023. 4. 5.
[Artificial Intelligence] Strong Method
2023. 4. 4.
[Artificial Intelligence] Inference
2023. 3. 29.
[Operating System] Process Management (2)
2023. 3. 22.
[Artificial Intelligence] Knowledge Representation
2023. 3. 21.
[Data Structures & Algorithms] Basic Concepts
2023. 3. 16.
[Operating System] Process Management (1)
2023. 3. 15.
[Artificial Intelligence] Heuristic search
2023. 3. 14.
[Artificial Intelligence] Adversarial Search
2023. 3. 14.
[Python] 파케이(Parquet)
2023. 3. 13.
[Operating System] Introduction and System Structures
2023. 3. 8.
[Artificial Intelligence] Solving problems by Searching (2)
2023. 3. 7.
[Artificial Intelligence] Solving problems by Searching (1)
2023. 3. 7.
[Artificial Intelligence] Introduction to Aritificial Intelligence
2023. 2. 28.
[Python] SQLAlchemy ORM
2023. 2. 13.
[Python] 제너레이터(Generator)
2023. 1. 7.
2024 : Happy New Year!
[BERT] BERT Fine-Tuning
2022. 12. 8.
[Language Model] 사전학습 언어 모델(Pretrained Language Model)
2022. 12. 1.
[Transformer] BERT, GPT-2
2022. 11. 23.
[NLP] BERT 이해하기
2022. 11. 22.
[Transformer] 트랜스포머(Transformer) - 트랜스포머와 컴퓨팅
2022. 11. 16.
[Transformer] 트랜스포머(Transformer) - 트랜스포머의 이해
2022. 11. 9.
[NLP] Word2Vec
2022. 11. 1.
[R Programming] 결측치(Missing Value) 처리
2022. 10. 28.
[NLP] 단어 임베딩(Word Embedding)
2022. 10. 28.
[NLP] 단어 표현 (Word Representation)
2022. 10. 18.
[NLP] 토큰화(Tokenization) / 토크나이징(Tokenizing)
2022. 10. 18.
[NLP] 텍스트 데이터의 문자열 처리
2022. 10. 18.
[NLP] 정규 표현식을 이용한 문자 추출
2022. 10. 18.
[R Programming] tidyr / dplyr
2022. 10. 17.
[R Programming] R 기본 객체와 자료 형태 (2)
2022. 10. 17.
[R Programming] R 기본 객체와 자료 형태 (1)
2022. 10. 17.
[R Programming] R에서의 변수 ∙ 상수 ∙ 주석문 ∙ 함수
2022. 10. 17.
[R Programming] 조건문 / 반복문
2022. 10. 17.
[Transformer] Attention Is All You Need (1)
2022. 10. 15.
[Ⅴ. Sequence Models] Transformer Network (2)
2022. 10. 9.
[Ⅴ. Sequence Models] Transformer Network (1)
2022. 10. 7.
[Ⅴ. Sequence Models] Sequence Models & Attention Mechanism (4)
2022. 10. 2.
[Ⅴ. Sequence Models] Sequence Models & Attention Mechanism (3)
2022. 10. 2.
[Ⅴ. Sequence Models] Sequence Models & Attention Mechanism (1)
2022. 9. 28.
[Ⅴ. Sequence Models] Sequence Models & Attention Mechanism (1)
2022. 9. 27.
[Ⅴ. Sequence Models] Natural Language Processing & Word Embeddings (5)
2022. 9. 20.
[Ⅴ. Sequence Models] Natural Language Processing & Word Embeddings (4)
2022. 9. 19.
[Ⅴ. Sequence Models] Natural Language Processing & Word Embeddings (3)
2022. 9. 17.
[Ⅴ. Sequence Models] Natural Language Processing & Word Embeddings (2)
2022. 9. 14.
[Ⅴ. Sequence Models] Natural Language Processing & Word Embeddings (1)
2022. 9. 12.
[Ⅴ. Sequence Models] Recurrent Neural Networks (7)
2022. 9. 7.
[Ⅴ. Sequence Models] Recurrent Neural Networks (6)
2022. 9. 6.
[Ⅴ. Sequence Models] Recurrent Neural Networks (5)
2022. 9. 5.
[Ⅴ. Sequence Models] Recurrent Neural Networks (4)
2022. 9. 4.
[Ⅴ. Sequence Models] Recurrent Neural Networks (3)
2022. 9. 2.
[Ⅴ. Sequence Models] Recurrent Neural Networks (2)
2022. 9. 1.
[Ⅴ. Sequence Models] Recurrent Neural Networks (1)
2022. 9. 1.
[Ⅳ. Convolutional Neural Networks] Special Applications (4)
2022. 8. 29.
[Ⅳ. Convolutional Neural Networks] Special Applications (3)
2022. 8. 29.
[Ⅳ. Convolutional Neural Networks] Special Applications (2)
2022. 8. 29.
[Ⅳ. Convolutional Neural Networks] Special Applications (1)
2022. 8. 26.
[Ⅳ. Convolutional Neural Networks] Object Detection (7)
2022. 8. 24.
[Ⅳ. Convolutional Neural Networks] Object Detection (6)
2022. 8. 24.
[Ⅳ. Convolutional Neural Networks] Object Detection (5)
2022. 8. 24.
[Ⅳ. Convolutional Neural Networks] Object Detection (4)
2022. 8. 24.
[Ⅳ. Convolutional Neural Networks] Object Detection (3)
2022. 8. 23.
[Ⅳ. Convolutional Neural Networks] Object Detection (2)
2022. 8. 23.
[Ⅳ. Convolutional Neural Networks] Object Detection (1)
2022. 8. 22.
[Ⅳ. Convolutional Neural Networks] Deep Convolutional Models (6)
2022. 8. 17.
[Ⅳ. Convolutional Neural Networks] Deep Convolutional Models (5)
2022. 8. 17.
[Ⅳ. Convolutional Neural Networks] Deep Convolutional Models (4)
2022. 8. 17.
[Ⅳ. Convolutional Neural Networks] Deep Convolutional Models (3)
2022. 8. 17.
[Ⅳ. Convolutional Neural Networks] Deep Convolutional Models (2)
2022. 8. 16.
[Ⅳ. Convolutional Neural Networks] Deep Convolutional Models (1)
2022. 8. 16.
[Ⅳ. Convolutional Neural Networks] Convolutional Neural Networks (6)
2022. 8. 11.
[Ⅳ. Convolutional Neural Networks] Convolutional Neural Networks (5)
2022. 8. 11.
[Ⅳ. Convolutional Neural Networks] Convolutional Neural Networks (4)
2022. 8. 10.
[Ⅳ. Convolutional Neural Networks] Convolutional Neural Networks (3)
2022. 8. 10.
[Ⅳ. Convolutional Neural Networks] Convolutional Neural Networks (2)
2022. 8. 9.
[Ⅳ. Convolutional Neural Networks] Convolutional Neural Networks (1)
2022. 8. 9.
[Ⅲ. Structuring Machine Learning Projects] End-to-end Deep Learning (2)
2022. 8. 4.
[Ⅲ. Structuring Machine Learning Projects] End-to-end Deep Learning (1)
2022. 8. 4.
[Ⅲ. Structuring Machine Learning Projects] Learning from Multiple Tasks (2)
2022. 8. 3.
[Ⅲ. Structuring Machine Learning Projects] Learning from Multiple Tasks (1)
2022. 8. 3.
[Ⅲ. Structuring Machine Learning Projects] Mismatched Training and Dev/Test Set (3)
2022. 7. 28.
[Ⅲ. Structuring Machine Learning Projects] Mismatched Training and Dev/Test Set (2)
2022. 7. 28.
[Ⅲ. Structuring Machine Learning Projects] Mismatched Training and Dev/Test Set (1)
2022. 7. 28.
[Ⅲ. Structuring Machine Learning Projects] Error Analysis (3)
2022. 7. 28.
[Ⅲ. Structuring Machine Learning Projects] Error Analysis (2)
2022. 7. 28.
[Ⅲ. Structuring Machine Learning Projects] Error Analysis (1)
2022. 7. 28.
[Ⅲ. Structuring Machine Learning Projects] Comparing to Human-level Performance (3)
2022. 7. 26.
[Ⅲ. Structuring Machine Learning Projects] Comparing to Human-level Performance (2)
2022. 7. 26.
[Ⅲ. Structuring Machine Learning Projects] Comparing to Human-level Performance (1)
2022. 7. 26.
[Ⅲ. Structuring Machine Learning Projects] Setting Up your Goal (3)
2022. 7. 25.
[Ⅲ. Structuring Machine Learning Projects] Setting Up your Goal (2)
2022. 7. 25.
[Ⅲ. Structuring Machine Learning Projects] Setting Up your Goal (1)
2022. 7. 25.
[Ⅲ. Structuring Machine Learning Projects] Introduction to ML Strategy (1)
2022. 7. 25.
[Ⅱ. Deep Neural Network] Introduction to Programming Frameworks (1)
2022. 7. 19.
[Ⅱ. Deep Neural Network] Multi-class Classification (1)
2022. 7. 18.
[Ⅱ. Deep Neural Network] Batch Normalization (3)
2022. 7. 18.
[Ⅱ. Deep Neural Network] Batch Normalization (2)
2022. 7. 18.
[Ⅱ. Deep Neural Network] Batch Normalization (1)
2022. 7. 18.
[Ⅱ. Deep Neural Network] Hyperparameter Tuning (2)
2022. 7. 17.
[Ⅱ. Deep Neural Network] Hyperparameter Tuning (1)
2022. 7. 15.
[Ⅱ. Deep Neural Network] Optimization Algorithms (6)
2022. 7. 13.
[Ⅱ. Deep Neural Network] Optimization Algorithms (5)
2022. 7. 12.
[Ⅱ. Deep Neural Network] Optimization Algorithms (4)
2022. 7. 12.
[Ⅱ. Deep Neural Network] Optimization Algorithms (3)
2022. 7. 11.
[Ⅱ. Deep Neural Network] Optimization Algorithms (2)
2022. 7. 11.
[Ⅱ. Deep Neural Network] Optimization Algorithms (1)
2022. 7. 11.
[Ⅱ. Deep Neural Network] Practical Aspects of Deep Learning (8)
2022. 7. 7.
[Ⅱ. Deep Neural Network] Practical Aspects of Deep Learning (7)
2022. 7. 7.
[Ⅱ. Deep Neural Network] Practical Aspects of Deep Learning (6)
2022. 7. 7.
[Ⅱ. Deep Neural Network] Practical Aspects of Deep Learning (5)
2022. 7. 6.
[Ⅱ. Deep Neural Network] Practical Aspects of Deep Learning (4)
2022. 7. 6.
[Ⅱ. Deep Neural Network] Practical Aspects of Deep Learning (3)
2022. 7. 5.
[Ⅱ. Deep Neural Network] Practical Aspects of Deep Learning (2)
2022. 7. 5.
[Ⅱ. Deep Neural Network] Practical Aspects of Deep Learning (1)
2022. 7. 4.
[Ⅰ. Neural Networks and Deep Learning] Deep Neural Networks (5)
2022. 7. 1.
[Ⅰ. Neural Networks and Deep Learning] Deep Neural Networks (4)
2022. 7. 1.
[Ⅰ. Neural Networks and Deep Learning] Deep Neural Networks (3)
2022. 6. 29.
[Ⅰ. Neural Networks and Deep Learning] Deep Neural Networks (2)
2022. 6. 29.
[Ⅰ. Neural Networks and Deep Learning] Deep Neural Networks (1)
2022. 6. 28.
[Ⅰ. Neural Networks and Deep Learning] Shallow Neural Networks (6)
2022. 6. 27.
[Ⅰ. Neural Networks and Deep Learning] Shallow Neural Networks (5)
2022. 6. 27.
[Ⅰ. Neural Networks and Deep Learning] Shallow Neural Networks (4)
2022. 6. 24.
[Ⅰ. Neural Networks and Deep Learning] Shallow Neural Networks (3)
2022. 6. 23.
[Ⅰ. Neural Networks and Deep Learning] Shallow Neural Networks (2)
2022. 6. 23.
[Ⅰ. Neural Networks and Deep Learning] Shallow Neural Networks (1)
2022. 6. 23.
[Ⅰ. Neural Networks and Deep Learning] Neural Networks Basics (9)
2022. 6. 20.
[Ⅰ. Neural Networks and Deep Learning] Neural Networks Basics (8)
2022. 6. 20.
[Ⅰ. Neural Networks and Deep Learning] Neural Networks Basics (7)
2022. 6. 17.
[Ⅰ. Neural Networks and Deep Learning] Neural Networks Basics (6)
2022. 6. 17.
[Ⅰ. Neural Networks and Deep Learning] Neural Networks Basics (5)
2022. 6. 15.
[Ⅰ. Neural Networks and Deep Learning] Neural Networks Basics (4)
2022. 6. 14.
[Ⅰ. Neural Networks and Deep Learning] Neural Networks Basics (3)
2022. 6. 14.
[Ⅰ. Neural Networks and Deep Learning] Neural Networks Basics (2)
2022. 6. 14.
[Ⅰ. Neural Networks and Deep Learning] Neural Networks Basics (1)
2022. 6. 13.
[Ⅰ. Neural Networks and Deep Learning] Introduction to Deep Learning (2)
2022. 6. 10.
[Ⅰ. Neural Networks and Deep Learning] Introduction to Deep Learning (1)
2022. 6. 9.
[NLP] Conversation Model
2022. 6. 8.
[NLP] Topic Models
2022. 6. 7.
[Machine Learning] SVM(Support Vector Machine) - Python
2022. 5. 30.
[Machine Learning] 서포트 벡터 머신(Support Vecrtor Machine, SVM)
2022. 5. 21.
[Machine Learning] Linear Regression
2022. 5. 19.
[Machine Learning] SVM(Support Vector Machine) - 4. Preview
2022. 5. 18.
[Machine Learning] SVM(Support Vector Machine) - 3. Kernal
2022. 5. 18.
[Machine Learning] SVM(Support Vector Machine) - 2. Margin
2022. 5. 17.
[Machine Learning] SVM(Support Vector Machine) - 1. Introduction
2022. 5. 16.
[NLP] Question Answering
2022. 5. 10.
[NLP] Information Extraction
2022. 5. 9.
[NLP] Machine Translation
2022. 4. 18.
[Data Mining] CNN
2022. 4. 14.
[NLP] Text Classification
2022. 4. 7.
[Data Mining] 딥러닝의 기초 - 오류역전파법
2022. 4. 6.
[NLP] Transformer
2022. 3. 31.
[NLP] NLP Research Trends (2)
2022. 3. 30.
[NLP] NLP Research Trends (1)
2022. 3. 24.
[NLP] NLP Practices
2022. 3. 24.
[Data Mining] 딥러닝의 기초 - 퍼셉트론, 인공신경망
2022. 3. 18.
[NLP] Word Representation (2)
2022. 3. 17.
[NLP] Word Representation (1)
2022. 3. 17.
[Data Mining] 딥러닝의 개발 과정
2022. 3. 16.
[Data Mining] 데이터 마이닝과 기계학습
2022. 3. 16.
[NLP] Natural Language Processing
2022. 3. 3.
[Spring] @Async Annotation(비동기 메소드)
2022. 1. 25.
[Kafka] 아파치 카프카(Apache Kafka)란 무엇인가? (2)
2022. 1. 5.
[Kafka] 아파치 카프카(Apache Kafka)란 무엇인가? (1)
2022. 1. 5.
2024 : Happy New Year!
[Database System] Concurrency Control (2)
2021. 11. 30.
[Database System] Concurrency Control (1)
2021. 11. 29.
Data Analytics vs Data Analysis
2021. 11. 26.
[Database System] Transaction Management
2021. 11. 25.
[Database System] Hashing File(2)
2021. 11. 18.
[Database System] Hashing File(1)
2021. 11. 17.
[Database System] Extenal Sorting
2021. 11. 12.
[Database System] Tree Index (2)
2021. 11. 8.
[Java] Stream API (5/5) - 연습문제 풀이
2021. 10. 29.
[Java] Stream API (4/5) - 활용 및 사용법 - 고급
2021. 10. 28.
[Java] Stream API (3/5) - 활용 및 사용법 - 기초
2021. 10. 27.
[Java] Stream API (2/5) - 람다식(Lambda Expression)과 함수형 인터페이스(Functional Interface)
2021. 10. 26.
[Java] Stream API (1/5) - Stream API에 대한 이해
2021. 10. 25.
[Programming] 함수형 프로그래밍(Functional Programming)
2021. 10. 22.
[Database System] Tree Index (1)
2021. 10. 15.
File Organization - Heap vs Sorting vs Hash
2021. 10. 14.
[Database System] File Organizations(2)
2021. 10. 13.
[Database System] File Organizations(1)
2021. 10. 13.
[Database System] Storing Database(2) - Buffer
2021. 10. 12.
[Database System] Storing Database(1) - Disk Storage
2021. 10. 12.
[Database System] Relational Algebra
2021. 10. 8.
[Database System] Relational Model
2021. 10. 8.
[Database System] Database/DBMS, DBMS vs File System
2021. 10. 7.
[빅데이터분석기사 필기] Ⅳ.빅데이터 결과 해석 - 02. 분석 결과 해석 및 활용 (4)
2021. 9. 28.
[빅데이터분석기사 필기] Ⅳ.빅데이터 결과 해석 - 02. 분석 결과 해석 및 활용 (3)
2021. 9. 28.
[빅데이터분석기사 필기] Ⅳ.빅데이터 결과 해석 - 02. 분석 결과 해석 및 활용 (2)
2021. 9. 28.
[빅데이터분석기사 필기] Ⅳ.빅데이터 결과 해석 - 02. 분석 결과 해석 및 활용 (1)
2021. 9. 28.
[빅데이터분석기사 필기] Ⅳ.빅데이터 결과 해석 - 01. 분석 모형 평가 및 개선 (4)
2021. 9. 27.
[빅데이터분석기사 필기] Ⅳ.빅데이터 결과 해석 - 01. 분석 모형 평가 및 개선 (3)
2021. 9. 27.
[빅데이터분석기사 필기] Ⅳ.빅데이터 결과 해석 - 01. 분석 모형 평가 및 개선 (2)
2021. 9. 27.
[빅데이터분석기사 필기] Ⅳ.빅데이터 결과 해석 - 01. 분석 모형 평가 및 개선 (1)
2021. 9. 27.
[빅데이터분석기사 필기] Ⅲ.빅데이터 모델링 - 02. 분석기법 적용 (12) 비모수 통계
2021. 9. 26.
[빅데이터분석기사 필기] Ⅲ.빅데이터 모델링 - 02. 분석기법 적용 (11) 앙상블 분석
2021. 9. 26.
[빅데이터분석기사 필기] Ⅲ.빅데이터 모델링 - 02. 분석기법 적용 (10) 비정형 데이터 분석
2021. 9. 26.
[빅데이터분석기사 필기] Ⅲ.빅데이터 모델링 - 02. 분석기법 적용 (9) 립러닝 분석
2021. 9. 26.
[빅데이터분석기사 필기] Ⅲ.빅데이터 모델링 - 02. 분석기법 적용 (8) 베이지안기법
2021. 9. 26.
[빅데이터분석기사 필기] Ⅲ.빅데이터 모델링 - 02. 분석기법 적용 (7) 시계
2021. 9. 26.
[빅데이터분석기사 필기] Ⅲ.빅데이터 모델링 - 02. 분석기법 적용 (6) 범주형 자료 분석
2021. 9. 26.
[빅데이터분석기사 필기] Ⅲ.빅데이터 모델링 - 02. 분석기법 적용 (5) 군집분석
2021. 9. 25.
[빅데이터분석기사 필기] Ⅲ.빅데이터 모델링 - 02. 분석기법 적용 (4) SVM, 연관성분석
2021. 9. 25.
[빅데이터분석기사 필기] Ⅲ.빅데이터 모델링 - 02. 분석기법 적용 (3) 인공신경망
2021. 9. 25.
[빅데이터분석기사 필기] Ⅲ.빅데이터 모델링 - 02. 분석기법 적용 (2) 의사결정나무
2021. 9. 25.
[빅데이터분석기사 필기] Ⅲ.빅데이터 모델링 - 02. 분석기법 적용 (1) 회귀분석
2021. 9. 25.
[빅데이터분석기사 필기] Ⅲ.빅데이터 모델링 - 01. 분석 모형 설계(2)
2021. 9. 25.
[빅데이터분석기사 필기] Ⅲ.빅데이터 모델링 - 01. 분석 모형 설계(1)
2021. 9. 25.
[빅데이터분석기사 필기] Ⅱ.빅데이터 탐색 - 03. 통계기법 이해(3)
2021. 9. 24.
[빅데이터분석기사 필기] Ⅱ.빅데이터 탐색 - 03. 통계기법 이해(2)
2021. 9. 24.
[빅데이터분석기사 필기] Ⅱ.빅데이터 탐색 - 03. 통계기법 이해(1)
2021. 9. 24.
[빅데이터분석기사 필기] Ⅱ.빅데이터 탐색 - 02. 데이터 탐색(2)
2021. 9. 24.
[빅데이터분석기사 필기] Ⅱ.빅데이터 탐색 - 02. 데이터 탐색(1)
2021. 9. 24.
[빅데이터분석기사 필기] Ⅱ.빅데이터 탐색 - 01. 데이터 전처리 (4)
2021. 9. 24.
[빅데이터분석기사 필기] Ⅱ.빅데이터 탐색 - 01. 데이터 전처리 (3)
2021. 9. 24.
[빅데이터분석기사 필기] Ⅱ.빅데이터 탐색 - 01. 데이터 전처리 (2)
2021. 9. 24.
[빅데이터분석기사 필기] Ⅱ.빅데이터 탐색 - 01. 데이터 전처리 (1)
2021. 9. 24.
[빅데이터분석기사 필기] Ⅰ.빅데이터 분석 기획 - 03. 데이터 수집 및 저장 계획(5)
2021. 9. 23.
[빅데이터분석기사 필기] Ⅰ.빅데이터 분석 기획 - 03. 데이터 수집 및 저장 계획(4)
2021. 9. 23.
[빅데이터분석기사 필기] Ⅰ.빅데이터 분석 기획 - 03. 데이터 수집 및 저장 계획(3)
2021. 9. 23.
[빅데이터분석기사 필기] Ⅰ.빅데이터 분석 기획 - 03. 데이터 수집 및 저장 계획(2)
2021. 9. 23.
[빅데이터분석기사 필기] Ⅰ.빅데이터 분석 기획 - 03. 데이터 수집 및 저장 계획(1)
2021. 9. 23.
[빅데이터분석기사 필기] Ⅰ.빅데이터 분석 기획 - 02. 데이터 분석 계획
2021. 9. 23.
[빅데이터분석기사 필기] Ⅰ.빅데이터 분석 기획 - 01. 빅데이터의 이해(3)
2021. 9. 23.
[빅데이터분석기사 필기] Ⅰ.빅데이터 분석 기획 - 01. 빅데이터의 이해(2)
2021. 9. 23.
[빅데이터분석기사 필기] Ⅰ.빅데이터 분석 기획 - 01. 빅데이터의 이해(1)
2021. 9. 23.