[Artificial Intelligence] Inference
Inference
- $\Delta$, 지식베이스
- SWITCH_ON
- ~ALARM
- SWITCH_ON∧DOOR_OPEN ALARM === ~A ∨ B
- ~SWITH_ON ∨ ~DOOR_OPEN ∨ ALARM
-
$\omega$ : ~ DOOR_OPEN
- How to Prove?
Theorem : example
Definition of Proof
- Proof of $\omega_n$ from a set of wffs $\Delta$
- sequence $[\omega_1, \omega_2, \dots, \omega_n]$
- $\omega_n$
- 1) in $\Delta$
- 2) or can be inferred from a wffs earlier in the sequence
- $\omega_n$ is a theorem of set $\Delta$
- If there is a proof of $\omega_n$ from $\Delta$
Resolution in Propositional Logic
- Literal
- Positive literal(atom), negative literal(negated atom)
- Clause(절): a set of literals, disjunction of all the literals in the set.
- ex. {P, Q, ~R} : $P \vee Q \vee ~R$
- { } : nil
Resolution on Clauses
Converting wffs to CNF
- (Conjunctive Normal Form): conjunction of clauses, 절들의 논리곱
Resolution Refutation 논리융합반박
- Convert wffs in $\Delta$ to clauuse form
- Convert negation of wff $\omega$ to clause form -> ~$\omega$모순의 의한 증명
- Combine clauses resulting from steps 1 and 2 into a set $S$
- Iteratively apply resolution to clauses in $S$ and add results to $S$ either
- until there are no more new resolvents
- or until empty clause is produced -> { } : nil
Theorem Proof : resolution
Exercise 1
- $\Delta$
- SWITCH_ON
-
~ALARM
- SWITCH_ON ∧ DOOR_OPEN -> ALARM === ~A ∨ B
- ~SWITH_ON ∨ ~DOOR_OPEN ∨ ALARM
-
$\omega$ : ~ DOOR_OPEN
- How to Prove? Resolution Refutation
Exercise 2
Resolution in Predicate Logic
- literal:
-
- Predicate Constant,~ Predicate Constant
- clause
- literal that might contain variables clause: ( , ,…, )( … ) 1 2 n 1 2 k x x x e e e 1 2 k e e … e i e { , ,…, }
-
Unification
…
Prove Theorem
Package Delivery Problem
(a) All of the packages in room 27 are smaller than any of the ones in room 28
$(\forall x, y) [P(x) \wedge P(y) \wedge I(x, 27) \wedge I(y, 28) \rightarrow S(x, y)]$
clause form $~P(x) \vee ~P(y) \vee ~I(x,27) \vee ~I(y,28) \vee S(x,y)$
(b) $P(A)$ (c) $P(B)$ (d) $I(A,27) \vee I(A,28)$ (e) $I(B,27)$ (f) Package B is not smaller than package A, $~S(B,A)$
- Prove that package A is in room 27
~$I(A,27)$
총 6개의 절 집합으로 증명해야함
I(A,27)
1. 먼저 ~$\omega$ 로 부정을 취해야한다.
2. ~$\omega$ 이 nil이 된다면 **증명**
3.
Resolution Refutation
$~I(A,27),I(A,27) \vee I(A,28) \Rightarrow I(A,28)$
댓글남기기