1 분 소요

image


Inference

  • $\Delta$, 지식베이스
    • SWITCH_ON
    • ~ALARM
    • SWITCH_ON∧DOOR_OPEN  ALARM === ~A ∨ B
    • ~SWITH_ON ∨ ~DOOR_OPEN ∨ ALARM
  • $\omega$ : ~ DOOR_OPEN

  • How to Prove?

Theorem : example

image


Definition of Proof

  • Proof of $\omega_n$ from a set of wffs $\Delta$
    • sequence $[\omega_1, \omega_2, \dots, \omega_n]$
  • $\omega_n$
    • 1) in $\Delta$
    • 2) or can be inferred from a wffs earlier in the sequence
  • $\omega_n$ is a theorem of set $\Delta$
    • If there is a proof of $\omega_n$ from $\Delta$


image


Resolution in Propositional Logic

  • Literal
  • Positive literal(atom), negative literal(negated atom)
  • Clause(절): a set of literals, disjunction of all the literals in the set.
  • ex. {P, Q, ~R} : $P \vee Q \vee ~R$
  • { } : nil


Resolution on Clauses

image


image


Converting wffs to CNF

  • (Conjunctive Normal Form): conjunction of clauses, 절들의 논리곱

image


Resolution Refutation 논리융합반박

  • Convert wffs in $\Delta$ to clauuse form
  • Convert negation of wff $\omega$ to clause form -> ~$\omega$모순의 의한 증명
  • Combine clauses resulting from steps 1 and 2 into a set $S$
  • Iteratively apply resolution to clauses in $S$ and add results to $S$ either
    • until there are no more new resolvents
    • or until empty clause is produced -> { } : nil


Theorem Proof : resolution

image


Exercise 1

  • $\Delta$
    • SWITCH_ON
    • ~ALARM

    • SWITCH_ON ∧ DOOR_OPEN -> ALARM === ~A ∨ B
    • ~SWITH_ON ∨ ~DOOR_OPEN ∨ ALARM
  • $\omega$ : ~ DOOR_OPEN

  • How to Prove? Resolution Refutation


Exercise 2


Resolution in Predicate Logic

  • literal:
    • Predicate Constant,~ Predicate Constant
      clause
      literal that might contain variables clause: ( , ,…, )( … ) 1 2 n 1 2 k x x x e e  e 1 2 k e  e  … e i e { , ,…, }


Unification

Prove Theorem

Package Delivery Problem

(a) All of the packages in room 27 are smaller than any of the ones in room 28

$(\forall x, y) [P(x) \wedge P(y) \wedge I(x, 27) \wedge I(y, 28) \rightarrow S(x, y)]$

clause form $~P(x) \vee ~P(y) \vee ~I(x,27) \vee ~I(y,28) \vee S(x,y)$

(b) $P(A)$ (c) $P(B)$ (d) $I(A,27) \vee I(A,28)$ (e) $I(B,27)$ (f) Package B is not smaller than package A, $~S(B,A)$


  • Prove that package A is in room 27

~$I(A,27)$

총 6개의 절 집합으로 증명해야함
I(A,27)



1. 먼저 ~$\omega$ 로 부정을 취해야한다.
2. ~$\omega$ 이 nil이 된다면 **증명**
3. 

Resolution Refutation

$~I(A,27),I(A,27) \vee I(A,28) \Rightarrow I(A,28)$

image

댓글남기기